Targeted expression of a toxin gene to D1 dopamine receptor neurons by cre-mediated site-specific recombination.
نویسندگان
چکیده
Idiopathic Parkinson's disease involves the loss of midbrain dopaminergic neurons, resulting in the presynaptic breakdown of dopaminergic transmission in the striatum. Huntington's disease and some neurodegenerative diseases with Parkinsonian features have postsynaptic defects caused by striatal cell death. Mice were generated in which an attenuated form of the diphtheria toxin gene (tox-176) was expressed exclusively in D1 dopamine receptor (D1R)-positive cells with the aim of determining the effect of this mutation on development of the basal ganglia and on the locomotor phenotype. Transgenic mice expressing Cre, a site-specific DNA recombinase, were crossed with a second line in which a transcriptionally silenced tox-176 gene was inserted into the D1R gene locus by homologous recombination. Young doubly transgenic mutant mice expressing the tox-176 gene displayed bradykinesia, dystonia, and had falls caused by myoclonic jerks. The mutant brain had evidence of apoptosis and reactive gliosis and, consistent with the D1R expression pattern, the striatum was reduced in volume, and the Islands of Calleja were absent. In contrast, the cortex was of normal thickness. D1Rs were not detectable in mutants by in situ hybridization or ligand autoradiography, whereas D2 dopamine receptor (D2R) mRNA and protein was present in the striatum. In addition, substance P and dynorphin, neuropeptides known to be expressed in D1R-positive striatonigral projection neurons were not detectable. Enkephalin, a marker found in D2-positive striatopallidal projection neurons was expressed in the mutant brain. The mutant represents a novel neurodegenerative disease model with a dramatic extrapyramidal phenotype.
منابع مشابه
Selectable Marker Gene Removal and Expression of Transgene by Inducible Promoter Containing FFDD Cis-Acting elements in Transgenic plants
Abstract Background: Selectable marker gene (SMG) systems are critical for generation of transgenic crops. Transgenic crop production Background: Selectable marker gene (SMG) systems are critical for generation of transgenic crops. Transgenic crop production without using SMG is not economically feasible. However, SMGs are non-essential once an intact transgenic plant has been established. Eli...
متن کاملStudy of Dopamine Receptor Gene Polymorphisms and Their Association with Growth and Egg Production Traits in West Azerbaijan Native Chicken
The objective of this study was to search for single nucleotide polymorphism (SNP)-type polymorphisms in the dopamine D1 receptor in West Azerbaijani native chicken and look for their association with egg production and body weight traits of chickens by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). For this purpose 180 blood samples were taken from nativ...
متن کاملCell depletion due to diphtheria toxin fragment A after Cre-mediated recombination.
Abnormal cell loss is the common cause of a large number of developmental and degenerative diseases. To model such diseases in transgenic animals, we have developed a line of mice that allows the efficient depletion of virtually any cell type in vivo following somatic Cre-mediated gene recombination. By introducing the diphtheria toxin fragment A (DT-A) gene as a conditional expression construc...
متن کاملUtilization of Site-Specific Recombination in Biopharmaceutical Production
Mammalian expression systems, due to their capacity in post-translational modification, are preferred systems for biopharmaceutical protein production. Several recombinant protein systems have been introduced to the market, most of which are under clinical development. In spite of significant improvements such as cell line engineering, introducing novel expression methods, gene silencing and pr...
متن کاملNeuronal adaptation to amphetamine and dopamine: Molecular mechanisms of prodynorphin gene regulation in rat striatum
Induction of prodynorphin gene expression by psychostimulant drugs may represent a compensatory adaptation to excessive dopamine stimulation and may contribute to the aversive aspects of withdrawal. We therefore investigated the molecular mechanisms by which dopamine psychostimulant drugs induce prodynorphin gene expression in vivo and in rat primary striatal cultures. We demonstrate that three...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 23 شماره
صفحات -
تاریخ انتشار 1998